Inicjatywa Doskonałości - Uczelnia Badawcza

Uniwersyteckie Centrum Doskonałości „Dynamika, analiza matematyczna i sztuczna inteligencja”

Kontaktul. Gagarina 11, 87-100 Toruń
e-mail: damsi@umk.pl

Stany splątane i dynamika otwartych układów kwantowych

Published

  1. E.O. Kiktenko, A.O. Malyshev, A.S. Mastiukova, V.I. Man’ko, A.K. Fedorov, and D. Chruściński: Probability representation of quantum dynamics using pseudostochastic maps, Phys. Rev. A 101, 052320 (2020). https://link.aps.org/doi/10.1103/PhysRevA.101.052320
  2. Joonwoo Bae, Dariusz Chruściński & Beatrix C. Hiesmayr: Mirrored entanglement witnesses,
    npj Quantum Information 6, 15 (2020). https://doi.org/10.1038/s41534-020-0242-z
  3. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński: A family of multipartite separability criteria based on correlation tensor, Phys. Rev. A 101, 012341 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012341
  4. Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello: Optimal entanglement witnesses from limited local measurements, Phys. Rev. A 101, 062319 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062319
  5. Katarzyna Siudzińska, Dariusz Chruściński: Quantum evolution with a large number of negative decoherence rates, J. Phys. A: Math. Theor.  53, 375305 (2020). https://doi.org/10.1088/1751-8121/aba7f2, arXiv:2006.02793 [quant-ph]
  6. Dariusz Chruściński, Takashi Matsuoka: Quantum conditional probability and measurement induced disturbance of a quantum channel, Rep. Math. Phys. 86, 115 (2020). https://doi.org/10.1016/S0034-4877(20)30060-4
  7. Katarzyna Siudzińska: Geometry of generalized Pauli channels, Phys. Rev. A. 101, 062323 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062323arXiv:2002.04657v2 [quant-ph], 2020.
  8. Katarzyna Siudzińska: Generalization of Pauli channels through mutually unbiased measurements, Phys. Rev. A. 102 , 032603 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.032603arXiv:2003.12570 [quant-ph]
  9. W. Jaskólski, G. Sarbicki: Topologically protected gap states and resonances in gated trilayer graphene, Phys. Rev. B. 102, 035424-1 (2020). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.035424arXiv:2005.11473 [cond-mat.mes-hall]
  10. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński, Enhanced realignment criterion vs. linear entanglement witnesses,  J. Phys. A: Math. Theor. 53, 455302 (2020). https://doi.org/10.1088/1751-8121/abba46
  11. Sagnik Chakraborty, Dariusz Chruściński, Gniewomir Sarbicki, Frederik vom Ende: On the Alberti-Uhlmann Condition for Unital Channels, Quantum 4, 360 (2020). https://doi.org/10.22331/q-2020-11-08-360
  12. Katarzyna Siudzińska: Classical capacity of the generalized Pauli channels, J. Phys. A: Math. Theor. 53, 445301 (2020). https://doi.org/10.1088/1751-8121/abb276arXiv:1908.03917 [quant-ph]
  13. Dariusz Chruściński, Farrukh Mukhamedov: On Kadison-Schwarz Approximation to Positive Maps, Open Sys. Inf. Dyn. vol 27-3, 2050016 (2020). (DOI to be supplied)
  14. Katarzyna Siudzińska: Geometry of symmetric and non-invertible Pauli channels, Phys. Rev. A 102, 062615 (2020) arXiv:2010.01128 [quant-ph], https://doi.org/10.1103/PhysRevA.102.062615
  15. K. Siudzińska, Markovian semigroup from mixing noninvertible dynamical maps, Phys. Rev. A 103, 022605 (2021).  https://doi.org/10.1103/PhysRevA.103.022605

Accepted

 

Submitted

  1. Ujan Chakraborty, Dariusz Chruściński: Construction of propagators for divisible dynamical maps, arXiv:2004.09264 [quant-ph, math-ph], 2020.
  2. Dariusz Chruściński, Kimmo Luoma, Jyrki Piilo, Andrea Smirne, Open system dynamics and quantum jumps: Divisibility vs. dissipativity, arXiv:2009.11312 [quant-ph], 2020.