Inicjatywa Doskonałości - Uczelnia Badawcza

Uniwersyteckie Centrum Doskonałości „Dynamika, analiza matematyczna i sztuczna inteligencja”

Kontaktul. Gagarina 11, 87-100 Toruń
e-mail: damsi@umk.pl

Stany splątane i dynamika otwartych układów kwantowych

Published

  1. E.O. Kiktenko, A.O. Malyshev, A.S. Mastiukova, V.I. Man’ko, A.K. Fedorov, and D. Chruściński: Probability representation of quantum dynamics using pseudostochastic maps, Phys. Rev. A 101, 052320 (2020). https://link.aps.org/doi/10.1103/PhysRevA.101.052320
  2. Joonwoo Bae, Dariusz Chruściński & Beatrix C. Hiesmayr: Mirrored entanglement witnesses,
    npj Quantum Information 6, 15 (2020). https://doi.org/10.1038/s41534-020-0242-z
  3. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński: A family of multipartite separability criteria based on correlation tensor, Phys. Rev. A 101, 012341 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012341
  4. Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello: Optimal entanglement witnesses from limited local measurements, Phys. Rev. A 101, 062319 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062319
  5. Katarzyna Siudzińska, Dariusz Chruściński: Quantum evolution with a large number of negative decoherence rates, J. Phys. A: Math. Theor.  53, 375305 (2020). https://doi.org/10.1088/1751-8121/aba7f2, arXiv:2006.02793 [quant-ph]
  6. Dariusz Chruściński, Takashi Matsuoka: Quantum conditional probability and measurement induced disturbance of a quantum channel, Rep. Math. Phys. 86, 115 (2020). https://doi.org/10.1016/S0034-4877(20)30060-4
  7. Katarzyna Siudzińska: Geometry of generalized Pauli channels, Phys. Rev. A. 101, 062323 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062323arXiv:2002.04657v2 [quant-ph], 2020.
  8. Katarzyna Siudzińska: Generalization of Pauli channels through mutually unbiased measurements, Phys. Rev. A. 102 , 032603 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.032603arXiv:2003.12570 [quant-ph]
  9. W. Jaskólski, G. Sarbicki: Topologically protected gap states and resonances in gated trilayer graphene, Phys. Rev. B. 102, 035424-1 (2020). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.035424arXiv:2005.11473 [cond-mat.mes-hall]
  10. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński, Enhanced realignment criterion vs. linear entanglement witnesses,  J. Phys. A: Math. Theor. 53, 455302 (2020). https://doi.org/10.1088/1751-8121/abba46
  11. Sagnik Chakraborty, Dariusz Chruściński, Gniewomir Sarbicki, Frederik vom Ende: On the Alberti-Uhlmann Condition for Unital Channels, Quantum 4, 360 (2020). https://doi.org/10.22331/q-2020-11-08-360
  12. Katarzyna Siudzińska: Classical capacity of the generalized Pauli channels, J. Phys. A: Math. Theor. 53, 445301 (2020). https://doi.org/10.1088/1751-8121/abb276arXiv:1908.03917 [quant-ph]
  13. Dariusz Chruściński, Farrukh Mukhamedov: On Kadison-Schwarz Approximation to Positive Maps, Open Sys. Inf. Dyn. vol 27-3, 2050016 (2020). (DOI to be supplied)
  14. Katarzyna Siudzińska: Geometry of symmetric and non-invertible Pauli channels, Phys. Rev. A 102, 062615 (2020) arXiv:2010.01128 [quant-ph], https://doi.org/10.1103/PhysRevA.102.062615
  15. K. Siudzińska, Markovian semigroup from mixing noninvertible dynamical maps, Phys. Rev. A 103, 022605 (2021).  https://doi.org/10.1103/PhysRevA.103.022605
  16. D. Chruściński, R. Fujii, G. Kimura, H. Ohno, Constraints for the spectra of generators of quantum dynamical semigroups, Linear Alg. Appl. 63 (2021), 293.  https://doi.org/10.1016/j.laa.2021.08.012
  17. U. Chakraborty, D. Chruściński, Construction of propagators for divisible dynamical maps, New J. Phys. 23 (2021), 013009.  https://doi.org/10.1088/1367-2630/abd43b
  18. B. C. Hiesmayr, D. McNulty, S. Baek, S. Singha Roy, J. Bae, D. Chruściński, Detecting entanglement can be more effective with inequivalent mutually unbiased bases, New J. Phys. 23 (2021), 093018.  https://doi.org/10.1088/1367-2630/ac20ea
  19. D. Chruściński, On the hybrid Davies like generator for quantum dissipation, Chaos 31 (2021), 023110.  https://doi.org/10.1063/5.0036620
  20. W. Tarnowski, I. Yusipov, T. Laptyeva, S. Denisov, D. Chruściński, K. Życzkowski, Random generators of Markovian evolution: A quantum-classical transition by superdecoherence, Phys. Rev. E. 104 (2021), 034118.  https://doi.org/10.1103/PhysRevE.104.034118
  21. D. Chruściński, G. Kimura, A. Kossakowski, Y. Shishido, Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup, Phys. Rev. Lett. 127 (2021), 050401.  https://doi.org/10.1103/PhysRevLett.127.050401
  22. K. Siudzińska, S. Chakraborty, and D. Chruściński, Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States, Entropy 23, 625 (2021).  https://doi.org/10.3390/e23050625

Accepted

 

Submitted

  1. Dariusz Chruściński, Kimmo Luoma, Jyrki Piilo, Andrea Smirne, Open system dynamics and quantum jumps: Divisibility vs. dissipativity, arXiv:2009.11312 [quant-ph], 2020.