Excellence Initiative - Research University

University Centre of Excellence “Dynamics, Mathematical Analysis and Artificial Intelligence”

Contactul. Gagarina 11, 87-100 Toruń
e-mail: damsi@umk.pl

Quantum Entanglement and the Dynamics of Open Quantum Systems



  1. E.O. Kiktenko, A.O. Malyshev, A.S. Mastiukova, V.I. Man’ko, A.K. Fedorov, and D. Chruściński: Probability representation of quantum dynamics using pseudostochastic maps, Phys. Rev. A 101, 052320 (2020). https://link.aps.org/doi/10.1103/PhysRevA.101.052320
  2. Joonwoo Bae, Dariusz Chruściński & Beatrix C. Hiesmayr: Mirrored entanglement witnesses,
    npj Quantum Information 6, 15 (2020). https://doi.org/10.1038/s41534-020-0242-z
  3. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński: A family of multipartite separability criteria based on correlation tensor, Phys. Rev. A 101, 012341 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012341
  4. Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello: Optimal entanglement witnesses from limited local measurements, Phys. Rev. A 101, 062319 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062319
  5. Katarzyna Siudzińska, Dariusz Chruściński: Quantum evolution with a large number of negative decoherence rates, J. Phys. A: Math. Theor.  53, 375305 (2020). https://doi.org/10.1088/1751-8121/aba7f2, arXiv:2006.02793 [quant-ph]
  6. Dariusz Chruściński, Takashi Matsuoka: Quantum conditional probability and measurement induced disturbance of a quantum channel, Rep. Math. Phys. 86, 115 (2020). https://doi.org/10.1016/S0034-4877(20)30060-4
  7. Katarzyna Siudzińska: Geometry of generalized Pauli channels, Phys. Rev. A. 101, 062323 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062323arXiv:2002.04657v2 [quant-ph], 2020.
  8. Katarzyna Siudzińska: Generalization of Pauli channels through mutually unbiased measurements, Phys. Rev. A. 102 , 032603 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.032603arXiv:2003.12570 [quant-ph]
  9. W. Jaskólski, G. Sarbicki: Topologically protected gap states and resonances in gated trilayer graphene, Phys. Rev. B. 102, 035424-1 (2020). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.035424arXiv:2005.11473 [cond-mat.mes-hall]
  10. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński, Enhanced realignment criterion vs. linear entanglement witnesses,  J. Phys. A: Math. Theor. 53, 455302 (2020). https://doi.org/10.1088/1751-8121/abba46
  11. Sagnik Chakraborty, Dariusz Chruściński, Gniewomir Sarbicki, Frederik vom Ende: On the Alberti-Uhlmann Condition for Unital Channels, Quantum 4, 360 (2020). https://doi.org/10.22331/q-2020-11-08-360
  12. Katarzyna Siudzińska: Classical capacity of the generalized Pauli channels, J. Phys. A: Math. Theor. 53, 445301 (2020). https://doi.org/10.1088/1751-8121/abb276arXiv:1908.03917 [quant-ph]
  13. Dariusz Chruściński, Farrukh Mukhamedov: On Kadison-Schwarz Approximation to Positive Maps, Open Sys. Inf. Dyn. vol 27-3, 2050016 (2020). (DOI to be supplied)
  14. Katarzyna Siudzińska: Geometry of symmetric and non-invertible Pauli channels, Phys. Rev. A 102, 062615 (2020) arXiv:2010.01128 [quant-ph], https://doi.org/10.1103/PhysRevA.102.062615


  1. K. Siudzińska, Markovian semigroup from mixing noninvertible dynamical maps, Phys. Rev. A 103, 022605 (2021).  https://doi.org/10.1103/PhysRevA.103.022605
  2. D. Chruściński, R. Fujii, G. Kimura, H. Ohno, Constraints for the spectra of generators of quantum dynamical semigroups, Linear Alg. Appl. 63 (2021), 293.  https://doi.org/10.1016/j.laa.2021.08.012
  3. U. Chakraborty, D. Chruściński, Construction of propagators for divisible dynamical maps, New J. Phys. 23 (2021), 013009.  https://doi.org/10.1088/1367-2630/abd43b
  4. B. C. Hiesmayr, D. McNulty, S. Baek, S. Singha Roy, J. Bae, D. Chruściński, Detecting entanglement can be more effective with inequivalent mutually unbiased bases, New J. Phys. 23 (2021), 093018.  https://doi.org/10.1088/1367-2630/ac20ea
  5. D. Chruściński, On the hybrid Davies like generator for quantum dissipation, Chaos 31 (2021), 023110.  https://doi.org/10.1063/5.0036620  [Q1]
  6. W. Tarnowski, I. Yusipov, T. Laptyeva, S. Denisov, D. Chruściński, K. Życzkowski, Random generators of Markovian evolution: A quantum-classical transition by superdecoherence, Phys. Rev. E. 104 (2021), 034118.  https://doi.org/10.1103/PhysRevE.104.034118  [Q1]
  7. D. Chruściński, G. Kimura, A. Kossakowski, Y. Shishido, Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup, Phys. Rev. Lett. 127 (2021), 050401.  https://doi.org/10.1103/PhysRevLett.127.050401
  8. K. Siudzińska, S. Chakraborty, and D. Chruściński, Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States, Entropy 23, 625 (2021).  https://doi.org/10.3390/e23050625
  9. A. Das, A. Bera, S. Chakraborty, D. Chruściński, Thermodynamics and the quantum speed limit in the non-Markovian regime, Phys. Rev. A. 104 (2021), 042202.  https://doi.org/10.1103/PhysRevA.104.042202
  10. K. Siudzińska, A. Das, and A. Bera, Engineering classical capacity of generalized Pauli channels with admissible memory kernels, Entropy 23, 1382 (2021).   https://doi.org/10.3390/e23111382
  11. K. Siudzińska and D. Chruściński, Entanglement witnesses from mutually unbiased measurements, Sci. Rep. 11, 22988 (2021). https://doi.org/10.1038/s41598-021-02356-2
  12. G. Sarbicki, G. Scala, D. Chruściński, Detection Power of Separability Criteria Based on a Correlation Tensor: A Case Study,
    Open Syst. Inf. Dyn. 28, 2150010 (2021).  https://doi.org/10.1142/S1230161221500104
  13. A. Dąbrowska, D. Chruściński, S. Chakraborty, G. Sarbicki, Eternally non-Markovian dynamics of a qubit interacting with a single-photon wavepacket, New J. Phys. 23, 123019 (2021).  https://doi.org/10.1088/1367-2630/ac3c60


  1. K. Siudzińska, Non-Markovianity criteria for mixtures of noninvertible Pauli dynamical maps, J. Phys. A: Math. Theor. 55, 215201 (2022). https://doi.org/10.1088/1751-8121/ac65c0  [Q1]
  2. K. Siudzińska, All classes of symmetric measurements in finite dimensions, Phys. Rev. A 105, 042209 (2022). https://doi.org/10.1103/PhysRevA.105.042209
  3. D. Chruściński, G. Kimura, H. Ohno, T. Singal, Bounding the Frobenius norm of a q-deformed commutator, Linear Algebra Appl. 646 (2022) 95–106, https://doi.org/10.1016/j.laa.2022.03.021
  4. Anindita Bera, Filip A. Wudarski, Gniewomir Sarbicki, and Dariusz Chruściński, Class of Bell-diagonal entanglement witnesses in C4⊗C4: Optimization and the spanning property, Phys. Rev. A 105, 052401 (2022).
  5. Sudipto Singha Roy, Anindita Bera, and Germán Sierra, Simulating violation of causality using a topological phase transition, Phys. Rev. A 105, 032432 (2022).   https://doi.org/10.1103/PhysRevA.105.032432
  6. D. Lonigro and D. Chruściński, Quantum regression in dephasing phenomena, J. Phys. A: Math. Theor. 55, 225308 (2022). https://doi.org/10.1088/1751-8121/ac6a2d  [Q1]
  7. D. Lonigro and D. Chruściński, Quantum regression beyond the Born-Markov approximation for generalized spin-boson models, Phys. Rev. A 105, 052435 (2022).  https://link.aps.org/doi/10.1103/PhysRevA.105.052435
  8. K. Siudzińska, Indecomposability of entanglement witnesses constructed from symmetric measurements, Sci. Rep. 12, 10785 (2022),   https://doi.org/10.1038/s41598-022-14920-5
  9. K. Siudzińska, Phase-covariant mixtures of non-unital qubit maps, J. Phys. A: Math. Theor. 55, 405303 (2022),  https://doi.org/10.1088/1751-8121/ac909b  [Q1]
  10. D. Chruściński, K. Luoma, J. Piilo, A. Smirne, How to design quantum-jump trajectories via distinct master equation representations, Quantum 6, 835 (2022). https://doi.org/10.22331/q-2022-10-13-835
  11. D. Chruściński, G. Kimura, H. Ohno, T. Singal, One parameter generalization of the Böttcher-Wenzel inequality and its application to open quantum dynamics, Linear Algebra and its Applications 656, 158–166 (2022). https://doi.org/10.1016/j.laa.2022.09.022
  12. F. Benatti, D. Chruściński, R. Floreanini, Local generation of entanglement with Redfield dynamics, Open Syst. Inf. Dyn. 29:1, 2250001 (2022). https://doi.org/10.1142/S1230161222500019
  13. T. Matsuoka, D. Chruściński, Compound State, Its Conditionality and Quantum Mutual Information, [In:] Accardi, L., Mukhamedov, F., Al Rawashdeh, A. (eds.) Infinite Dimensional Analysis, Quantum Probability and Applications. ICQPRT 2021. Springer Proceedings in Mathematics & Statistics, vol 390. Springer, Cham, 2022. https://doi.org/10.1007/978-3-031-06170-7_7
  14. D. Chruściński, Dynamical maps beyond Markovian regime, Physics Reports 992, 1–85 (2022). https://doi.org/10.1016/j.physrep.2022.09.003
  15. D. Chruściński, The legacy of Andrzej Kossakowski, Open Syst. Inf. Dyn. 28:4, 2150015 (2022). https://doi.org/10.1142/S1230161221500153
  16. Yujun Choi, Tanmay Singal, Young-Wook Cho, Sang-Wook Han, Kyunghwan Oh, Sung Moon, Yong-Su Kim, and Joonwoo Bae, Single-copy certification of two-qubit gates without entanglement, Phys. Rev. Applied 18, 044046 (2022), DOI: https://doi.org/10.1103/PhysRevApplied.18.044046
  17. G. Sarbicki, M. Ghosh Dastidar, Detecting entanglement between modes of light, Phys. Rev. A 105, 062459 (2022). https://doi.org/10.1103/PhysRevA.105.062459






  1. Dariusz Chruściński, Kimmo Luoma, Jyrki Piilo, Andrea Smirne, Open system dynamics and quantum jumps: Divisibility vs. dissipativity, arXiv:2009.11312 [quant-ph], 2020.
  2. Joonwoo Bae, Anindita Bera, Dariusz Chruściński, Beatrix C. Hiesmayr, Daniel McNulty,  How many measurements are needed to detect bound entangled states?arXiv:2108.01109 [quant-ph], 2021.
  3. Sudipto Singha Roy, Anindita Bera, Germán Sierra, No causal order and topological phases, arXiv:2105.09795 [quant-ph], 2021.
  4. T. Singal, M.-H. Hsiu, Approximate 3-designs and partial decomposition of the Clifford group representation using transvectionsarXiv:2111.13678  [quant-ph], 2021-22


  1. A. Das, B. K. Agarwalla, and V. Mukherjee, Precision bound in periodically modulated continuous quantum thermal machines, arXiv: 2204.14005 (2022).
  2. T. Saha, A. Das, and S. Ghosh, Quantum homogenization in non-Markovian collisional model, arXiv: 2201.08412 [quant-ph] (2022).
  3. Samaneh Hesabi, Anindita Bera, and Dariusz Chruściński, Memory effects displayed in the evolution of continuous variable system, arXiv:2204.05950  [quant-ph] (2022).
  4. D. Chruściński, Time inhomogeneous quantum dynamical maps, arXiv:2210.02770 [quant.ph] (2022)
  5. D. Chruściński, S. Hesabi, D. Lonigro, On Markovianity and classicality in multilevel spin-boson models, arXiv:2210.06199 [quant.ph] (2022)
  6. D. Lonigro, D. Chruściński, Excitation-damping quantum channels, arXiv:2206.04623 [quant.ph] (2022)
  7. Tanmay Singal, Che Chiang, Eugene Hsu, Eunsang Kim, Hsi-Sheng Goan and Min-Hsiu Hsieh, Counting stabiliser codes for arbitrary dimension, arXiv:2209.01449 [quant-ph] (2022)
  8. A. Bera, G. Sarbicki, D. Chruściński, A class of optimal positive maps in Mn, submitted to: Linear Algebra and Applications, arXiv:2207.03821 [quant-ph]
  9. G.Sarbicki, M. Ghosh Dastidar, Generalization of the CHSH inequality for detecting entanglement between two-mode light states, submitted to: Phys. Rev. A, arXiv:2210.05341 [quant-ph]
  10. S. Chakraborty, A. Das and D. Chruściński, Strongly coupled quantum Otto cycle with single qubit bath, arXiv:2206.14751 [quant-ph] (2022).
  11. K. Siudzińska, Geometry of phase-covariant qubit channels, arXiv:2210.17448 [quant-ph] (2022).