Excellence Initiative - Research University

University Centre of Excellence “Dynamics, Mathematical Analysis and Artificial Intelligence”

Contactul. Gagarina 11, 87-100 Toruń
e-mail: damsi@umk.pl

Quantum Entanglement and the Dynamics of Open Quantum Systems



  1. E.O. Kiktenko, A.O. Malyshev, A.S. Mastiukova, V.I. Man’ko, A.K. Fedorov, and D. Chruściński: Probability representation of quantum dynamics using pseudostochastic maps, Phys. Rev. A 101, 052320 (2020). https://link.aps.org/doi/10.1103/PhysRevA.101.052320
  2. Joonwoo Bae, Dariusz Chruściński & Beatrix C. Hiesmayr: Mirrored entanglement witnesses,
    npj Quantum Information 6, 15 (2020). https://doi.org/10.1038/s41534-020-0242-z
  3. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński: A family of multipartite separability criteria based on correlation tensor, Phys. Rev. A 101, 012341 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.012341
  4. Alberto Riccardi, Dariusz Chruściński, and Chiara Macchiavello: Optimal entanglement witnesses from limited local measurements, Phys. Rev. A 101, 062319 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062319
  5. Katarzyna Siudzińska, Dariusz Chruściński: Quantum evolution with a large number of negative decoherence rates, J. Phys. A: Math. Theor.  53, 375305 (2020). https://doi.org/10.1088/1751-8121/aba7f2, arXiv:2006.02793 [quant-ph]
  6. Dariusz Chruściński, Takashi Matsuoka: Quantum conditional probability and measurement induced disturbance of a quantum channel, Rep. Math. Phys. 86, 115 (2020). https://doi.org/10.1016/S0034-4877(20)30060-4
  7. Katarzyna Siudzińska: Geometry of generalized Pauli channels, Phys. Rev. A. 101, 062323 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.101.062323arXiv:2002.04657v2 [quant-ph], 2020.
  8. Katarzyna Siudzińska: Generalization of Pauli channels through mutually unbiased measurements, Phys. Rev. A. 102 , 032603 (2020). https://journals.aps.org/pra/abstract/10.1103/PhysRevA.102.032603arXiv:2003.12570 [quant-ph]
  9. W. Jaskólski, G. Sarbicki: Topologically protected gap states and resonances in gated trilayer graphene, Phys. Rev. B. 102, 035424-1 (2020). https://journals.aps.org/prb/abstract/10.1103/PhysRevB.102.035424arXiv:2005.11473 [cond-mat.mes-hall]
  10. Gniewomir Sarbicki, Giovanni Scala, Dariusz Chruściński, Enhanced realignment criterion vs. linear entanglement witnesses,  J. Phys. A: Math. Theor. 53, 455302 (2020). https://doi.org/10.1088/1751-8121/abba46
  11. Sagnik Chakraborty, Dariusz Chruściński, Gniewomir Sarbicki, Frederik vom Ende: On the Alberti-Uhlmann Condition for Unital Channels, Quantum 4, 360 (2020). https://doi.org/10.22331/q-2020-11-08-360
  12. Katarzyna Siudzińska: Classical capacity of the generalized Pauli channels, J. Phys. A: Math. Theor. 53, 445301 (2020). https://doi.org/10.1088/1751-8121/abb276arXiv:1908.03917 [quant-ph]
  13. Dariusz Chruściński, Farrukh Mukhamedov: On Kadison-Schwarz Approximation to Positive Maps, Open Sys. Inf. Dyn. vol 27-3, 2050016 (2020). (DOI to be supplied)
  14. Katarzyna Siudzińska: Geometry of symmetric and non-invertible Pauli channels, Phys. Rev. A 102, 062615 (2020) arXiv:2010.01128 [quant-ph], https://doi.org/10.1103/PhysRevA.102.062615


  1. K. Siudzińska, Markovian semigroup from mixing noninvertible dynamical maps, Phys. Rev. A 103, 022605 (2021).  https://doi.org/10.1103/PhysRevA.103.022605
  2. D. Chruściński, R. Fujii, G. Kimura, H. Ohno, Constraints for the spectra of generators of quantum dynamical semigroups, Linear Alg. Appl. 63 (2021), 293.  https://doi.org/10.1016/j.laa.2021.08.012
  3. U. Chakraborty, D. Chruściński, Construction of propagators for divisible dynamical maps, New J. Phys. 23 (2021), 013009.  https://doi.org/10.1088/1367-2630/abd43b
  4. B. C. Hiesmayr, D. McNulty, S. Baek, S. Singha Roy, J. Bae, D. Chruściński, Detecting entanglement can be more effective with inequivalent mutually unbiased bases, New J. Phys. 23 (2021), 093018.  https://doi.org/10.1088/1367-2630/ac20ea
  5. D. Chruściński, On the hybrid Davies like generator for quantum dissipation, Chaos 31 (2021), 023110.  https://doi.org/10.1063/5.0036620  [Q1]
  6. W. Tarnowski, I. Yusipov, T. Laptyeva, S. Denisov, D. Chruściński, K. Życzkowski, Random generators of Markovian evolution: A quantum-classical transition by superdecoherence, Phys. Rev. E. 104 (2021), 034118.  https://doi.org/10.1103/PhysRevE.104.034118  [Q1]
  7. D. Chruściński, G. Kimura, A. Kossakowski, Y. Shishido, Universal Constraint for Relaxation Rates for Quantum Dynamical Semigroup, Phys. Rev. Lett. 127 (2021), 050401.  https://doi.org/10.1103/PhysRevLett.127.050401
  8. K. Siudzińska, S. Chakraborty, and D. Chruściński, Interpolating between Positive and Completely Positive Maps: A New Hierarchy of Entangled States, Entropy 23, 625 (2021).  https://doi.org/10.3390/e23050625
  9. A. Das, A. Bera, S. Chakraborty, D. Chruściński, Thermodynamics and the quantum speed limit in the non-Markovian regime, Phys. Rev. A. 104 (2021), 042202.  https://doi.org/10.1103/PhysRevA.104.042202
  10. K. Siudzińska, A. Das, and A. Bera, Engineering classical capacity of generalized Pauli channels with admissible memory kernels, Entropy 23, 1382 (2021).   https://doi.org/10.3390/e23111382
  11. K. Siudzińska and D. Chruściński, Entanglement witnesses from mutually unbiased measurements, Sci. Rep. 11, 22988 (2021). https://doi.org/10.1038/s41598-021-02356-2
  12. G. Sarbicki, G. Scala, D. Chruściński, Detection Power of Separability Criteria Based on a Correlation Tensor: A Case Study,
    Open Syst. Inf. Dyn. 28, 2150010 (2021).  https://doi.org/10.1142/S1230161221500104
  13. A. Dąbrowska, D. Chruściński, S. Chakraborty, G. Sarbicki, Eternally non-Markovian dynamics of a qubit interacting with a single-photon wavepacket, New J. Phys. 23, 123019 (2021).  https://doi.org/10.1088/1367-2630/ac3c60





  1. Dariusz Chruściński, Kimmo Luoma, Jyrki Piilo, Andrea Smirne, Open system dynamics and quantum jumps: Divisibility vs. dissipativity, arXiv:2009.11312 [quant-ph], 2020.
  2. Katarzyna Siudzińska, Dariusz Chruściński, Entanglement witnesses from mutually unbiased measurementsarXiv:2109.14069 [quant-ph, math-ph], 2021.
  3. Joonwoo Bae, Anindita Bera, Dariusz Chruściński, Beatrix C. Hiesmayr, Daniel McNulty,  How many measurements are needed to detect bound entangled states?arXiv:2108.01109 [quant-ph], 2021.
  4. Sudipto Singha Roy, Anindita Bera, Germán Sierra, No causal order and topological phases, arXiv:2105.09795 [quant-ph], 2021.